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In this paper we extend to general interpolation schemes which satisfy only a
mild regularity condition, a theorem of Saff on the convergence of interpolating
rational functions with a fixed number of poles. The approach is to use the
interpolation scheme to define a measure whose logarithmic potential is then
shown to be the appropriate majorizing function for establishing convergence.

1. INTRODUCTION

Recently, Saff [6] extended the classical result of Montessus de Ballore on
the convergence of Pade fractions with a fixed number of poles to the con­
vergence of interpolating rational functions with a fixed number of poles.
However, the hypotheses of Saff's Theorem contain the restriction that the
points of the interpolation scheme be properly distributed with respect to a
Green's function. In this paper we extend Saff's result to general interpolation
schemes which satisfy only a mild regularity condition.

Our approach is to use the interpolation scheme to define a unique measure
whose logarithmic potential is the appropriate function for majorizing the
remainder term. For interpolation schemes restricted to the real line, this
approach has been exploited by Gontscharoff [3] and Krylov [5]. Moreover,
it is implicit to some extent in the treatment of the n-point Hermite Inter­
polation Problem by Davis [1] and Walsh [8]. However, the general case
requires some of the Tesults from potential theory. The interpolation measure
and its properties are presented in Section 2. The Majorization Theorem is
established in Section 3. With this machinery, the extension of Saff's theorem
is entirely straightforward, and this extension is developed in Section 4. In
Section 5 we illustrate some aspects of the Majorization Theorem with a
classical problem of Runge.

* This research was done at the University of California at San Diego and was supported
in part by the Air Force Office of Scientific Research under USAF Grant 71-2006.
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INTERPOLATING RATIONAL FUNCTIONS

2. THE INTERPOLATION MEASURE

Let Z denote a bounded triangular interpolation scheme.
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Let E denote the smallest closed (hence compact) set containing the points
of Z, and let M(E) denote the set of normalized (i.e., 11'(E) = 1), positive
Borel measures with support in E.

DEFINITION 1. Given a triangular interpolation scheme, Z, the associated
elementary measures {11'n}, are defined by

1 n

11'n(B) = n + 1 i~ X(Zn,i E B),

where X(P) = 1 if P is true and 0 if P is false. The following theorem is a
specialization to the present case of the Banach-Alaoglu theorem, which
asserts that the unit ball is compact in the weak* topology.

THEOREM 1. Given a sequence of measures {11'n E M(E)}, there exists a
subseqeunce, {11'n }, and a measure 11' E M(E) such that Il.n -+ 11" D

k r k

DEFINITION 2. A sequence of elementary measures will be called regular
iff 11'n -+ 11'. The measure, 11', will be called the interpolation measure for the
triangular interpolation scheme, Z.

EXAMPLE 1. The following interpolation scheme does not give rise to a
regular sequence of elementary measures.

1
1 0
1 0 1
1 0 1 1
1 0 1 1 0
1 0 1 1 0 0
1 0 1 1 0 0 1
1 0 1 1 0 0 1 1
1 0 1 1 0 0 1 1 1
1 0 1 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 1 1 0
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Clearly there is one subsequence of measures converging to a measure with
mass t at 0 and mass tat 1, and another subsequence converging to a measure
which has mass! at 1 and t at O.

Since not every triangular interpolation scheme gives rise to a regular
sequence of elementary measures, the que~tion of verifying regularity is of
some interest. In general, given a concrete sequence of elementary measures,
a direct verification of regularity is quite straightforward. However, the
following theorem, an elementary version of the Helley-Bray theorem, is
particularly useful in many applications. Moreover, this theorem lends
credence to the view that interpolation schemes which arise in practical
problems can be expected to be regular.

THEOREM 2. Given p- E M(E) and {P-n E M(E): n = 0, I, ...}, if for every
open disk B, limn_>oo P-n(B) = p-(B), then P-n --+ p-. 0

The following example shows that the hypothesis of Theorem 2 is not
necessary.

EXAMPLE 2. We define f-tn to have mass lin at the points {(en - 1)ln) ()k :

k = 0, ... , n - I}, where () is the primitive nth root of unity. It is a straight­
forward verification of the definition to show that this sequence is indeed
regular. The limit measure has its support on the unit circle I z i == 1 and
assigns to an arc of the circle the measure Ij(27T) times the arc length. However
for the open unit disk, B, P-n(B) = I while p-(B) = O.

At this stage we have introduced the concept of an interpolation measure
and have indicated that such a measure can be expected to be uniquely
defined by each triangular interpolation scheme of practical interest. We will
now indicate the relationship between the interpolation measure and
questions of convergence for interpolating rational functions.

DEFINITION 3. Let Z be a triangular interpolation scheme, let E be the
smallest closed set containing the points of Z, and let fez) be a function
holomorphic on E. The Hermite Interpolation Problem of Type (m, n) is to
find a rational function rmn(z) such that

rmn(z) - fez) = (z - zm+n.o)[m+n+l1g(z),

where

and g(z) is analytic on an open set containing the points {zm+n.o , Zm+n.l ,... ,
zm+n.m+n}' The Hermite Interpolation Problem of Type (m, n) is not solvable
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in general. However, we can always find polynomials Pmn(z) of degree at most
m and qmn(z) of degree at most n such that

Pmn(z) - qmn(z)f(z) = (z - zm+n,o)[m+n+11 g(z). (2.1)

The set of polynomials which satisfy (2.1) are equivalent rational forms and
define a unique rational function, rmn(z), called the rational interpolant.
When the Hermite Interpolation Problem of Type (m, n) is solvable, the
rational interpolant is in fact the unique solution. A detailed discussion of
these elementary facts is contained in [9].

The key item in questions of convergence is the polynomial (z­
zm+n,o)[m+n+11 , and the following observation links this polynomial to the
interpolation measure.

i(z - zn,0)[n+l1 11jln+1l = exp (- t logO/I z - ~ I) dr-nW).

Thus questions of convergence lead naturally to questions concerning the
interpolation measure and its logarithmic potential (the integral in the
exponent above). We next summarize some facts concerning logarithmic
potentials. The proofs of these results may be found in [2, 4, 7, 9].

DEFINITION 4, Let E be a compact subset of the complex plane, and let
f-L E M(E). Then the logarithmic potential, u(z; f-L), is the function

u(z; f-L) == J10gO/! z - ~ !) df-LW,
E

THEOREM 3. The logarithmic potential, u(z; r-), is a harminic function on
Ec and is lower semicontinuous and superharmonic on E. 0

3. THE MAJORIZATION THEOREM

In this section we will establish the key majorizing property of the loga­
rithmic potential of an interpolation measure.

Notation. Let N > 0,

UN(Z; f-L) == t min(logO/1 z - ~ I), N) df-LW·

LEMMA. Given a collection of normalized positive Borel measures, {f-L" E

M(E)}, the family offunctions {uN(z; f-L,,)} is equicontinuous.

Proof It is elementary to verify that given € > 0 the function min
(logO/! g I), N) is uniformly continuous with 0 ~ €e-N • Hence, if I Zo - Z1 ! <
0, then

I min(log(l/I Zo - ~ I), N) - min(log(l/! Z1 - ~ I), N)I < €,
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for all ~. But JL",(E) = 1. Thus if I Zo - Zl I < 8, then

for every ex. 0

THEOREM 4. Let {J1-n E M(E)} be a regular sequence ofelementary measures
with J1-n -+ J1-. Then

(a) lim inf,,-+oo u(z; J1-,,) ~ u(z; J1-), uniformly on compact subsets of the
complex plane; and

(b) limn -+oo u(z; J1-") = u(z; J1-), uniformly on compact subsets ofEe.

Proof First, note that u(z; J1-n) ~ uN(z; J1-n). Second, note that the
collection {uN(z; J1-), UN(Z; J1-",)} is equicontinuous by the Lemma. Thus given
E choose 8 so that

whenever I Z - z' I < 8. Then, since we are concerned with Z E K, K a
compact set, pick a finite set of points {~o , ~l , ... , ~k} so that the set of disks
{B(~o , 8), ..., Bgk ,8)} cover K. Then for each ~i (since J1-" -+ J1-), we can
choose N i so that

for every n ~ N i • Then given any Z E K there is a closest ~i , call it ~*, for
which we will have

I uN(z; JL) - UN(Z; J1-n)1

= I uN(z; J1-) - UN(~*; J1-) + UN(~*; J1-) - UNa*; J1-,,) + uNa*; J1-n)

- uN(z; J1-n)1 < (E/3) + (E/3) + (E/3) = E,

for every n ~ N* = max(No ,... , N k ). Thus

for every n ~ N*. But N is arbitrary, so we must have

u(Z; J1-n) ~ u(z; J1-) - E,

for all Z E K and for all n ~ N*. This establishes (a).
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For K a compact subset of EC, we can find two points '0 E E, '1 E K, such
that I '0 - '1 I = dist(E, K). Thus for Z EK,

u(Z; fLn) :( logO/1 '0 - '1 I).

Choosing N > logO/I '0 - '1 I) we have, for ZEK, uN(z; fLn) = u(z; fLn).
Hence by the Lemma and the preceding argument we see that

I u(z; fL) - u(z; fLn)1 < €

for all Z E K, and for all n ;;:, N*. This establishes (b). 0

4. CONVERGENCE OF INTERPOLATING RATIONAL FUNCTIONS WITH A FIXED

NUMBER OF POLES

In this section we present a theorem which describes conditions under
which a sequence of rational interpolants with a fixed number of poles will
converge. This result is a substantial, but entirely straightforward generaliza­
tion of the recent theorem by Saff [6]. The underlying conditions are the
following: Z is a bounded triangular interpolation scheme, whose associated
sequence of elementary measures is regular, fLn ~ fL; E is the smallest closed
set containing the points of Z; and Eo == {z: rU(z;,,) < p}.

THEOREM 5. If f(z) is holomorphic on E and meromorphic on Eo with
precisely n poles, {?Tl ,... , ?Tn}, inside Eo , then for all m sufficiently large, there
exist rational functions, rmiz) = Pmiz)/qmn(z), which solve the Hermite
Interpolation Problem of Type (m, n) for f(z) on Z. Moreover, the denomina­
tors, qmn(z), converge to (z - ?Tl)[n j , uniformly on compact subsets of the
complex plane, and the rational functions, rmn(z), converge to f(z) uniformly
on compact subsets of E p - {?Tl ,... , ?Tn} as m ~ 00.

Remark. It is important to note that in general Eo does not contain E.

Proof The proof follows Saff's quite closely. Let rmn(z) = Pmn(z)/qmiz)
and express qmn(z) as

n

qmn(z) = L amk(z - ?Tl)[kj
k~O

with amn = 1. Let h(z) == qmn(z)(z - ?Tl)[n j f(z). Then h(z) is holomorphic
on an open set Q => E v Eo. For any choice of the coefficients {amo ,... ,
am,n-l}, we can find a polynomial, Pm+n,o(z), which interpolates h(z) at the
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points {zm+n.o ,... , zm+n.m+n}. Now by the Hermite integral representation of
the interpolating polynomial, we have

n

= L amkc~m)(Z).
k~O

T is a cycle contained in Q homologous to 0, with winding number, nez, T) =

1, for all z E E V Ep • Since e-u(z;,,) is upper-semicontinuous, it assumes its
maximum on compact sets. Thus for K a compact subset of Ep , let ex ==
max{e-u(Z;"): Z E K}. Moreover, by definition, for all Z E Ep", e-u(z;,,) ;? p and
p > ex. Now,

I
(z - zm+n,o)[m+n+l] I ra )[ 1] = exp(-em + n + l)[u(z; iLm+n) ~ u(",; iLm+n)]).- zm+n.o m+n+

By Theorem 4 we can find N so that if m ;? N then u(z; iLm+n) > u(z; iL) - €

for all Z E K, and ua; iLm+n) < u('; iL) + E for all , E r. Hence,

I
(z - Z )[m+11+1] I

m+n.O :s; exp(-em + n + l)[u(z; iL) - u('; iL) - 2EDa - Zm+n.o)[m+n+l]

:s; [(ex/p) e2€](m+n+l),

and we can choose E sufficiently small so that exe2€/p < 1. Thus,

uniformly on compact subsets of Ep • Moreover by Weierstrass's theorem we
also have

r DiC<m)() ~ L f (, - 7T1)[k]a - 7T1)[n] fez) d'
,,:~ k Z ~ 27Ti r (, - z)[j+l] .

Now let Yi == L~=~ X(7Ti = 7Ti) and define ej;;') == DYiCLm)(7Ti)' Then (z - 7T1)[n]
divides Pm+n,o(z) iff the linear system

(m)][ ]el,n-1 amo· .· .· .
elm) a
n.n-l m,n-l

= _[e~t]
elm)

nn
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is solvable. But Cauchy's Integral Theorem implies that limm~oo ej;;') is zero
for k > i-I and nonzero for k = i-I. Thus

[e
lm)
10

lim det :
m--·X)

elm)
nO

Hence for m sufficiently large the linear system is uniquely solvable.
Let qmn(z) be determined so that (z - 7T1)[nj divides Pm+n,o(z). Let Pmn(z) =

Pm+n,o(z)/(z - 7T1)[nj. Then

Pmn(z) - qmn(z)f(z) = (z - zm+n,o)[m+n+lJg(z),

where g(z) is holomorphic on E. Hence, rmn(z) 0= Pmn(z)/qmn(z) is the unique
rational interpolant. However, since limm~oo elm) = 0 for i = 1,... , n, and
since amk ->- 0 for k = 0, ... , n - I, we see that

lim qmn(z) = (z - 7Ti)[nJ,
m-'>OO

uniformly on compact subsets of the complex plane. Since the poles are some
finite distance from the set E, for m sufficiently large qmn(z) does not vanish
on E and the rational interpolant, rmn(z), actually solves the Hermite Inter­
polation Problem for f(z) on Z.

Thus, since K is compact, for sufficiently large m I qmn(z)(z - 7T1)[nj I is
uniformly bounded below by a positive constant TJ. Hence, letting M =0

max{1 hWI : ~ E r}, and 0 0= dist(K, T), we see that for all z E K,

I Pm+n,o(z) - qmn(z)(z - 7T1)[nj f(z)1 ~ (M 1 r 1/27TO)[(ex/p) e2<]lm+n+1 ).

Consequently,

1 rmn(z) - f(z)1 ~ (M I r 1/27TOTJ)[(ex/p) e2<]<m+n+l).

Thus limm~oo rmn(z) = f(z) uniformly on compact subsets of E p - {7T1 ,... , 7Tn}.
Finally note that limm_>oo Pmn(z) = (z - 7T1)[nj f(z) uniformly in a neighbor­
hood of each 7Ti , and hence for m sufficiently large Pmn(z) does not vanish at
{7T1 ,..., 7Tn}. So for m sufficiently large rmiz) has precisely n poles, counting
multiplicities, which tend to the poles {7T1 ,... , 7Tn} of f(z). 0

5. RUNGE'S PROBLEM

About the turn of the century, Runge posed the following problem. Let
f(x) = 1/(1 + x 2

), and let Pn(x) be the polynomial which interpolates f(x) at
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n + I points uniformly distributed on the interval [-5,5]. Does Pn(x) -4­

f(x)? For this problem we see that fLn -4- dt/1O and

u(z; dt/IO) = -(1/10)[-10 + (5 - x) log 15 - z 1+ (5 + x) log 15 + z I

+ y (arg(5 - z) - arg(-5 - z))],

where z = x + iy. In Fig. I we show some of the isopotential curves for
u(z; dt/1O). In particular, the curve with value 2.46879067... passes through
the poles of f(x) at ±i and intersects the real line at ±3.6333843.... Hence,
the sequence {Pn(z)} converges inside this curve. Moreover, the Majorization
Theorem can be used to show that the sequence diverges outside this curve
with the possible exception of points on the interval itself. Runge himself
showed that the sequence diverges for I x I > 3.633..., and x =1= 5. The fact
that our results do not assert anything concerning divergence on the interval
itself indicates an area where the Majorization Theorem can possibly be
refined.

6.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0

-6.0

FIG. 1. Isopotential curves for the uniform distribution.

7.0

The hypothesis of Saff's theorem is stated in terms of the Green's function
for the set, F, of limit points of the interpolation scheme. This hypothesis is
equivalent to requiring that fLn -4- v, where v is the unique equilibrium
distribution for the set F. In this setting, Walsh's results on maximal con­
vergence [8] appear to be intimately related to Frostman's theorem [7,
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p.60; 9, p. 123]. It is well known, see, for example, Tsuji [7, p. 73] or [9,
p. 133], that the zeros of the Tchebycheff polynomials yield an interpolation
scheme with this property. For the interval [-5, 5], I-'-n -- v, where

and
u(z; v) = 10g(2/1 z + (Z2 - 25)1/2 I).

It is easily verified that for x E [-5, 5], rU(X;v) = 2.5, and the isopotential
curves for values larger than 2.5 are ellipses with foci at ±5. Figure 2 illustra-

6.0

.0 -4.0 -3.0 -2.0 -1.0 0.0

-6.0

FIG. 2. IsopotentiaI curves for the Tchebycheff distribution.

tes some of these curves. Consequently, we see that for this scheme, the
corresponding sequence of interpolating polynomials will converge to any
function which is analytic on [-5, 5].
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